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This paper reports a “delayed choice quantum eraser” experiment proposed by Scully and Drühl in 1982. The experimental
results demonstrated the possibility of simultaneously observing both particle-like and wave-like behavior of a quantum via
quantum entanglement. The which-path or both-path information of a quantum can be erased or marked by its entangled twin
even after the registration of the quantum.
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Complementarity, perhaps the most basic principle of
quantum mechanics, distinguishes the world of quantum
phenomena from the realm of classical physics. Quantum
mechanically, one can never expect to measure both pre-
cise position and momentum of a quantum at the same
time. It is prohibited. We say that the quantum ob-
servables “position” and “momentum” are “complemen-
tary” because the precise knowledge of the position (mo-
mentum) implies that all possible outcomes of measuring
the momentum (position) are equally probable. In 1927,
Niels Bohr illustrated complementarity with “wave-like”
and “particle-like” attributes of a quantum mechanical
object [1]. Since then, complementarity is often super-
ficially identified with “wave-particle duality of matter”.
Over the years the two-slit interference experiment has
been emphasized as a good example of the enforcement
of complementarity. Feynman, discussing the two-slit
experiment, noted that this wave-particle dual behav-
ior contains the basic mystery of quantum mechanics
[2]. The actual mechanisms that enforce complementar-
ity vary from one experimental situation to another. In
the two-slit experiment, the common “wisdom” is that
the position-momentum uncertainty relation δxδp ≥ h̄

2
makes it impossible to determine which slit the photon
(or electron) passes through without at the same time
disturbing the photon (or electron) enough to destroy
the interference pattern. However, it has been proven [3]
that under certain circumstances this common interpre-
tation may not be true. In 1982, Scully and Drühl found
a way around this position-momentum uncertainty obsta-
cle and proposed a quantum eraser to obtain which-path
or particle-like information without scattering or
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otherwise introducing large uncontrolled phase factors
to disturb the interference. To be sure the interference
pattern disappears when which-path information is ob-
tained. But it reappears when we erase (quantum era-
sure) the which-path information [3,4]. Since 1982, quan-
tum eraser behavior has been reported in several experi-
ments [5]; however, the original scheme has not been fully
demonstrated.

One proposed quantum eraser experiment very close
to the 1982 proposal is illustrated in Fig.1. Two atoms
labeled by A and B are excited by a laser pulse. A pair of
entangled photons, photon 1 and photon 2, is then emit-
ted from either atom A or atom B by atomic cascade
decay. Photon 1, propagating to the right, is registered
by a photon counting detector D0, which can be scanned
by a step motor along its x-axis for the observation of
interference fringes. Photon 2, propagating to the left, is
injected into a beamsplitter. If the pair is generated in
atom A, photon 2 will follow the A path meeting BSA
with 50% chance of being reflected or transmitted. If the
pair is generated in atom B, photon 2 will follow the B
path meeting BSB with 50% chance of being reflected or
transmitted. Under the 50% chance of being transmitted
by either BSA or BSB, photon 2 is detected by either
detector D3 or D4. The registration of D3 or D4 provides
which-path information (path A or path B) of photon 2
and in turn provides which-path information of photon
1 because of the entanglement nature of the two-photon
state of atomic cascade decay. Given a reflection at either
BSA or BSB photon 2 will continue to follow its A path
or B path to meet another 50-50 beamsplitter BS and
then be detected by either detector D1 or D2, which are
placed at the output ports of the beamsplitter BS. The
triggering of detectors D1 or D2 erases the which-path in-
formation. So that either the absence of the interference
or the restoration of the interference can be arranged via
an appropriately contrived photon correlation study. The
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experiment is designed in such a way that L0, the optical
distance between atoms A, B and detector D0, is much
shorter than Li, which is the optical distance between
atoms A, B and detectors D1, D2, D3, and D4, respec-
tively. So that D0 will be triggered much earlier by pho-
ton 1. After the registration of photon 1, we look at these
“delayed” detection events of D1, D2, D3, and D4 which
have constant time delays, τi ' (Li − L0)/c, relative to
the triggering time of D0. It is easy to see these “joint de-
tection” events must have resulted from the same photon
pair. It was predicted that the “joint detection” counting
rate R01 (joint detection rate between D0 and D1) and
R02 will show interference pattern when detector D0 is
scanned along its x-axis. This reflects the wave property
(both-path) of photon 1. However, no interference will be
observed in the “joint detection” counting rate R03 and
R04 when detector D0 is scanned along its x-axis. This
is clearly expected because we now have indicated the
particle property (which-path) of photon 1. It is impor-
tant to emphasize that all four “joint detection” rates
R01, R02, R03, and R04 are recorded at the same time
during one scanning of D0 along its y-axis. That is, in
the present experiment we “see” both wave (interference)
and which-path (particle-like) with the same apparatus.

We wish to report a realization of the above quantum
eraser experiment. The schematic diagram of the experi-
mental setup is shown in Fig.2. Instead of atomic cascade
decay, spontaneous parametric down conversion (SPDC)
is used to prepare the entangled two-photon state. SPDC
is a spontaneous nonlinear optical process from which a
pair of signal-idler photons is generated when a pump
laser beam is incident onto a nonlinear optical crystal
[6]. In this experiment, the 351.1nm Argon ion pump
laser beam is divided by a double-slit and incident onto a
type-II phase matching [7] nonlinear optical crystal BBO
(β−BaB2O4) at two regions A and B. A pair of 702.2nm
orthogonally polarized signal-idler photon is generated ei-
ther from A or B region. The width of the SPDC region
is about 0.3mm and the distance between the center of
A and B is about 0.7mm. A Glen-Thompson prism is
used to split the orthogonally polarized signal and idler.
The signal photon (photon 1, either from A or B) passes
a lens LS to meet detector D0, which is placed on the
Fourier transform plane (focal plane for collimated light
beam) of the lens. The use of lens LS is to achieve the
“far field” condition, but still keep a short distance be-
tween the slit and the detector D0. Detector D0 can be
scanned along its x-axis by a step motor. The idler pho-
ton (photon 2) is sent to an interferometer with equal-
path optical arms. The interferometer includes a prism
PS, two 50-50 beamsplitters BSA, BSB, two reflecting
mirrors MA, MB, and a 50-50 beamsplitter BS. Detec-
tors D1 and D2 are placed at the two output ports of
the BS, respectively, for erasing the which-path infor-
mation. The triggering of detectors D3 and D4 provide
which-path information of the idler (photon 2) and in
turn provide which-path information of the signal (pho-
ton 1). The electronic output pulses of detectors D1, D2,

D3, and D4 are sent to coincidence circuits with the out-
put pulse of detector D0, respectively, for the counting
of “joint detection” rates R01, R02, R03, and R04. In
this experiment the optical delay (Li − L0) is chosen to
be ' 2.5m, where L0 is the optical distance between the
output surface of BBO and detector D0, and Li is the
optical distance between the output surface of the BBO
and detectors D1, D2, D3, and D4, respectively. This
means that any information one can learn from photon
2 must be at least 8ns later than what one has learned
from the registration of photon 1. Compared to the 1ns
response time of the detectors, 2.5m delay is good enough
for a “delayed erasure”.

Figs.3, 4, and 5 report the experimental results, which
are all consistent with prediction. Figs.3 and 4 show the
“joint detection” rates R01 and R02 against the x coor-
dinates of detector D0. It is clear we have observed the
standard Young’s double-slit interference pattern. How-
ever, there is a π phase shift between the two interference
fringes. The π phase shift is explained as follows. Fig.5
reports a typical R03 (R04), “joint detection” counting
rate between D0 and “which-path” D3 (D4), against the
x coordinates of detector D0. An absence of interference
is clearly demonstrated. There is no significant difference
between the curves of R03 and R04 except the small shift
of the center.

To explain the experimental results, a standard quan-
tum mechanical calculation is presented in the following.
The “joint detection” counting rate, R0i, of detector D0

and detector Dj , on the time interval T , is given by the
Glauber formula [8]:

R0j ∝ 1
T

∫ T

0

∫ T

0

dT0dTj〈Ψ|E(−)
0 E

(−)
j E

(+)
j E

(+)
0 |Ψ〉

=
1
T

∫ T

0

∫ T

0

dT0dTj |〈0|E(+)
j E

(+)
0 |Ψ〉|2, (1)

where T0 is the detection time of D0, Tj is the detec-
tion time of Dj( j = 1, 2, 3, 4) and E

(±)
0,j are positive and

negative-frequency components of the field at detectors
D0 and Dj, respectively. |Ψ〉 is the entangled state of
SPDC,

|Ψ〉 =
∑
s,i

C(ks,ki) a†s(ω(ks)) a†i (ω(ki))|0〉, (2)

where C(ks,ki) = δ(ωs + ωi − ωp)δ(ks + ki − kp), for
the SPDC in which ωj and kj (j = s, i, p) are the fre-
quency and wavevectors of the signal (s), idler (i), and
pump (p), respectively, ωp and kp can be considered as
constants, a single mode laser line is used for pump and
a†s and a†i are creation operators for signal and idler pho-
tons, respectively. For the case of two scattering atoms,
see ref. [3], and in the case of cascade radiation, see ref.
[9], C(ks,ki) has a similar structure but without the mo-
mentum delta function. The δ functions in eq.(2) are the
results of approximations for an infinite size SPDC crys-
tal and for infinite interaction time. We introduce the
two-dimensional function Ψ(t0, tj) as in eq.(1),
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Ψ(t0, tj) ≡ 〈0|E(+)
j E

(+)
0 |Ψ〉. (3)

Ψ(t0, tj) is the joint count probability amplitude (“wave-
function” for short), where t0 ≡ T0 − L0/c, tj ≡ Tj −
Lj/c, j = 1, 2, 3, 4, L0 (Lj) is the optical distance be-
tween the output point on the BBO crystal and D0 (Dj).
It is straightforward to see that the four “wavefunctions”
Ψ(t0, tj), correspond to four different “joint detection”
measurements, having the following different forms:

Ψ(t0, t1) = A(t0, tA1 ) + A(t0, tB1 ),
Ψ(t0, t2) = A(t0, tA2 )−A(t0, tB2 ), (4)

Ψ(t0, t3) = A(t0, tA3 ), Ψ(t0, t4) = A(t0, tB4 ), (5)

where as in Fig.1 the upper index of t (A or B) labels the
scattering crystal (A or B region) and the lower index of t
indicates different detectors. The different sign between
the two amplitudes Ψ(t0, t1) and Ψ(t0, t2) is caused by
the transmission-reflection unitary transformation of the
beamsplitter BS, see Fig.1 and Fig.2. It is also straight-
forward to calculate each of the A(ti, tj) [10]. To sim-
plify the calculations, we consider the longitudinal inte-
gral only and write the two-photon state in terms of the
integral of ke and ko:

|Ψ〉 = A
′
0

∫
dke

∫
dko δ(ωe + ωo − ωp)×

Φ(∆kL)a†ke
a†ko

|0〉, (6)

where a type-II phase matching crystal with finite length
of L is assumed. Φ(∆kL) is a sinc-like function,
Φ(∆kL) = (ei(∆kL) − 1)/i(∆kL). Using eqs. (3) and
(6) we find,

A(ti, tj) = A0

∫
dke

∫
dkoδ(ωe + ωo − ωp)×

Φ(∆kL)fi(ωe)fj(ωo)e−i(ωete
1+ωoto

2), (7)

where fi,j(ω), is the spectral transmission function of an
assumed filter placed in front of the kth detector and is
assumed Gaussian to simplify the calculation. To com-
plete the integral, we define ωe = Ωe+ν and ωo = Ωo−ν,
where Ωe and Ωo are the center frequencies of the SPDC,
Ωe + Ωo = Ωp and ν is a small tuning frequency, so that
ωe + ωo = Ωp still holds. Consequently, we can expand
ke and ko around Ke(Ωe) and Ko(Ωo) to first order in ν:

ke = Ke + ν
dωe

dke

∣∣∣∣
Ωe

= Ke +
ν

ue
,

ko = Ko − ν
dωo

dko

∣∣∣∣
Ωo

= Ko − ν

uo
, (8)

where ue and uo are recognized as the group velocities
of the e-ray and o-ray at frequencies Ωe and Ωo, respec-
tively. Completing the integral, the biphoton wavepacket
of type-II SPDC is thus:

A(ti, tj) = A0Π(ti − tj)e−iΩitie−iΩjtj , (9)

where we have dropped the e, o indices. The shape of
Π(t1−t2) is determined by the bandwidth of the spectral
filters and the parameter DL of the SPDC crystal, where
D ≡ 1/uo− 1/ue. If the filters are removed or have large
enough bandwidth, we have a rectangular pulse function
Π(t1 − t2).

Π(t0 − tj) =
{

1 if 0 ≤ t0 − tj ≤ DL,
0 otherwise.

It is easy to find that the two amplitudes in Ψ(t0, t1) and
Ψ(t0, t2) are indistinguishable (overlap in both t0−tj and
t0 + tj), respectively, so that interference is expected in
both the coincidence counting rates, R01 and R02; how-
ever, with a π phase shift due to the different sign,

R01 ∝ cos2(xπd/λf), and R02 ∝ sin2(xπd/λf).

If we consider “slit” A and B both have finite width (not
infinitely narrow), an integral is necessary to sum all pos-
sible amplitudes along slit A and slit B. We will have a
standard interference-diffraction pattern for R01 and R02,

R01 ∝ sinc2(xπa/λf) cos2(xπd/λf),
R02 ∝ sinc2(xπa/λf) sin2(xπd/λf), (10)

where a is the width of the slit A and B (equal width),
d is the distance between the center of slit A and B,
λ = λs = λi is the wavelength of the signal and idler, and
f is the focal length of lens LS. We have also applied the
“far field approximation” for the signal and equal optical
distance of the interferometer for the idler. After consid-
ering the finite size of the detectors and the divergence
of the pump beam for further integrals, the interference
visibility is reduced to the level close to the observation.

For the “joint detection” R03 and R04, it is seen
that the “wavefunction” in eq.(5) (which clearly provides
“which-path” information) has only one amplitude and
no interference is expected.

In conclusion, we have realized a quantum eraser ex-
periment of the type proposed in ref. [3]. The experimen-
tal results demonstrate the possibility of observing both
particle-like and wave-like behavior of a light quantum
via quantum mechanical entanglement. The which-path
or both-path information of a quantum can be erased or
marked by its entangled twin even after the registration
of the quantum.
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FIG. 1. A proposed quantum eraser experiment. A pair
of entangled photons is emitted from either atom A or atom
B by atomic cascade decay. “Clicks” at D3 or D4 provide
which-path information and “clicks” at D1 or D2 erase the
which-path information.
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FIG. 2. Schematic of the experimental setup. The pump
laser beam of SPDC is divided by a double-slit and incident
onto a BBO crystal at two regions A and B. A pair of sig-
nal-idler photons is generated either from A or B region. The
detection time of the signal photon is 8ns earlier than that of
the idler.
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FIG. 3. R01 (“joint detection” rate between detectors D0

and D1) against the x coordinates of detector D0. A standard
Young’s double-slit interference pattern is observed.
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FIG. 4. R02 (“joint detection” rate between detectors D0

and D2) Note, there is a π phase shift compare to R01 shown
in Fig.3
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FIG. 5. R03 (“joint detection” rate between detectors D0

and D3). An absence of interference is clearly demonstrated.
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B From Retrocorrelation to Retrosignaling with n x m Delayed Choices ? 
 
1. Description of above Retrocorrelation effect: 
 
A photon hits a measuring screen, the x-coordinate arises randomly on base of a 
circumstance-dependent probability distribution, in the following called dice. 
Which dice is used, is decided later, by means of a switch and a 
further coincidence at an entangled photon (reflection/passage at 50:50 beam splitter). 
On base of the photon impact one cannot recognize which dice is used. 
That the earlier location randomness at the screen causes the later 50:50 randomness is 
considered to be excluded. 
So the dice is actually formed in the future. 
However, no information is supposed to flow into the past, it is “only a correlation“. 
For special groups of photons, however, this was not proved as far as I know, and there are still 
speculations about the information flow. 
 

 

2. From Retrocorrelation to Retrosignaling 

 

In order to clarify this partially or finally, I suggest the following set-up: 

 

 

slightly modificated experiment from Kim...Scully 2000 “Delayed Choice Quantum Eraser“ 
BSoff:=100%passage as if no BS in place 

 

The photon paths are not qualitatively different from the original setup: 
If BSoff, photons going up have influence on signal like D4-photons, down D3, 
if BSon, up is like D2, down likeD1. 
So I use the signal dices from Kim...Scully. 
 

50n simultaneous experiments without coincidence counters (m=50):   
 



 

-- 50 signal photons from 50 Delayed choice quantum erasers hit one screen. n such arrays deliver 
a noisy signal at t=4, but if the noise is distinctly different depending on the BS-position at t=20, 
then one bit was sent into the past. 
 

The dice of a signal photon x-coordinate depends on the path of the idler photon.  
fi(x):=R0i(x)    (article, expectation curve, not measurement curve or interpolation curve) 
For BSon and idler up dice is f1, down f2, off up f3, off down f4.  
For a screen, when BSon, the dice is 
 
(I) Pon(d,m) = d/m f1 + (m-d)/m f2 , with d=number of up-idlers, m number of signal photons 
  (The screen expectation looks as if every single signal photon has this expectation, though they 
  have different expectations due to their idlers.) 
 
The signal curves Pon(d,m), or p'(x,d) in picture, are as follows; half of them with more than 1 
maximum: 
(The focal length of the signal lense is assumed f=0.7m, which fits to the mm-scale on the x-axes in 
their FIG.3-5;  D1 is idler up, D2 down) 
 
 



 



With BSoff, there are only signal curves (dices) with one maximum. 
A screen measurement-graph set based on a Bson-dice set should have more maxima on average 
than with BSoff-dice: 
 

 
 
For more than m=50 signal photons, the probability curves are better approached, but the 
percentage of screens with more than 1 maximum in probability curve decreases fast. 
 
With different, clear-shaped maxima expectation curves, one can distinguish if the noise at t=4 
comes from BSon or off at t=20: 
In case of 10 (equal) measurement intervalls, there are between 0 and 5 maxima in the 
measurement curve. (depends on definition, two equal values as max)  
 
black- maxima expectation curve for very high n if BSon, blue off. (ficticious)   
 
 



 
Red dots = maxima-spektrum for a measurement with n screens; 
n high, so blue curve is recognised with 99,x% security. (one future bit) 
 
 
Mathematical problem: 
From a probability distribution, and a number of measurement intervalls, I don´t see how many 
maxima the measurement curve has: 

Example P(x) = -x2+4x , m=50 events, I=10 intervalls 

 
red – measurement set with 4 maxima  
                                   x2 
P(interval):= 3/32 I ʃ P(x)dx I 
                                 x1 
ƩP(interval)=1=100% 
So is there a formula/algorithm, where I put in P,m,I, which then says “with x%probab. a 
measurement curve (bar chart) has 0 max, with y% 1 max,...,  5 max“ ?  
Couldn't find one, so I have to do it by foot. (Calculate all combinations) 
 
Mi(d) := bar chart Probability over maxima number for one screen, d idlers up, 50-d idlers down 
i=0 for BSoff, 1 for on  (for i=1 the possible x-location probability curves are shown above) 
MSi := bar chart  Probability over maxima number for random set of 50-photon-screens (= Maxima 
spectrum expectation; = probability for measurement set in picture, “screen set maxima 
spectrum“) 
(blue and black bar curve above) 



The bar charts can be added according to their occurence probability: 
 
 (II) MSi = [d=0to50]ƩMi(d)(m over d)/2exp50           (Addition lemma) 
       (bar charts can be added because the underlying screen probability curves are not added, 
        which would change the expectation of number of maxima. Just the probabilities to find  
        maxima are added.) 
 
 
 
 
– To actually do an Delayed Choice Array without coincidence counters, the equipment must be 
very good (especially if you want tenthousands single experiments on a chip). 
Every Photon must be under control. 
Maybe higher-energy photons are possible. 
Noise sources preventing a sharp maxima spectrum expectation: 
N1) The first problem besides a stable source is the double slit. Not all photons pass:  
 

 

blue- sheet with slits    yellow- ca.99%light cone 
If here the passing rate is about equal to the rate of the cross-sectional areas inside the light cone, 
about 65% of the photons get stuck in the sheet. 
But that´s no problem: If a sheet detects a photon impact, a new one can be sent within a 
nanosecond without disturbing the statistics. So it´s possible that exactly 50 photons per screen 
(=array of 50 single experiments) go through the 50 doubleslits. This might take some ns, so longer 
light paths are necessary. To increase the choice delay time, slow photon medium would be helpful 
if very transparent. Then one could switch BS by hand, in contradiction to effect or not. 
 
N2) Next comes two regions on a splitting crystal which splits the photon into entangled half-
energy photons (signal and idler). Depending on which slit the photon went through, one of the 
regions emits a signal/idler pair. 
The standard interpretation is that the photon has gone through both slits (or neither slit if you see 
it as localized particle) if no proof can exist that it has gone through a distinct slit. 
So at the crystal, there´s a superposition of two events: “Region A emits“ and “Region B emits“. 
The superposition stays intact/unsolved if there can exist no proof through which slit the photon 
has gone (BSon). That means, it is then undefined what classically happened in Region A or B. If a 
photon was emitted from one region (or not) is neither true nor false.  
The size of the regions brings a little indefiniteness to the probability curves, and blurrs the 
maxima expectation graph. 



And some photons might get stuck. 
Maybe missing photons on the screen can be replaced. (Counting photon impacts, doing missing 
runs long before idlers reach BS.) 
 
N3) Lenses, mirrors, measurement devices are not 100% exact too. 
Hopefully this all sums up to less than one photon failure in 50 photons (per screen).  
I try to figure out technical details, then calculate not-to-blurry maxima expectation. 
 
 
 
 
-- missing functions f3, f4 (expectation curves R03,R04 in article): 
 
(III) f3 + f4 = f1 + f2 =(sin(1917.34x)/(1917.34x))² 
 (else one screen is enough do detect effect difference from BSon/off.) 
 
No explicit calculation of R03, R04 in the text. 
From 

 

follows 

From 

follows 
R03,4 = ? 
which are standard distributions with only one maximum. 
(can´t do calculation at the moment) 
 
In the article, the graph R03 doesn't fit the other graphs, it was taken from another run. 
The measuring intervals are different from R01,2 though in the text they emphasize how important 
it is that all measurements are done in one run, and there are about 20% less photons. 
This doesn't mess with their task, it was just about proving there's no interference. 
But it hinders the statistical analysis of parallel runs without coincidence counters, maybe 
intentionally. 
 
 
 

– The fastest way to accomplish sending a bit into the past is obviously combining a few 
retrocorrelation experiments, on one screen, with the new fundamental force “Peoch79“, as 
Princeton failed to do, see other publication “Draft Articles on Retrocausality“. 
The new force changes wave functions, or measurement outcomes, and is called „intent“. 
I still offer to replace the chicks in Peoch79 by small electric devices, which would make research 
easier. (good chances for success) 



 
The decision to not switch BSoff though it was predicted by its effect, causes some sort of time 
paradox, especially if lots of action is attached to the signal. Like lots of machines, programs etc 
start and then the cause for the start is removed!? 

 
 
– In the 1990s, there was an effort by bureaucrats, scientists, activists etc to disclose secret stuff in 
order to support evolution of mankind, like politics, ufos, psychology, energy, Dr. Greer, and such. 
(NSA, Army etc sponsor of article) 
Even Sgt. Scully of X-files might have been named after one of the authors, who took part in both 
publications, 1982 and 1999. Because it's the “spookiest“ effect. (spooky squared compared to the 
entanglement Einstein called spooky) 
Then some detail-disclosure followed (Wikileaks), and now allegedly Qanon, which is sort of 
continuation of disclosure, or half shit and half not wrong, or complete BS, or all in one, didn´t look 
at. 

 


