Possible Retrosignaling with

Array of n x m Delayed Choice Quantum Erasers, without coincidence counter

Thomas Goßmann, Kassel, Dec2020
A article on retrocorrelation experiment, Kim/Yu/Kulik/Shih/Scully 1999, based on article by Drühl/Scully 1982

B discussion of experiment, slight chance in setup; $\mathrm{n} \times \mathrm{m}$ array such that one gets distinguishable signal noises at $\mathrm{t}=4$ depending on decision "all beamsplitters on / all off" at $\mathrm{t}=20$, which is one future bit.

The work shall now be finished, by showing it to physicists in Munich, to get the missing functions out of the text, then get all technical details into calculation (like photon loss percentages), then I can actually calculate the maxima spectra of the two different signal noises.

A Retrocorrelation

A Delayed Choice Quantum Eraser

Yoon-Ho Kim, R. Yu, S.P. Kulik*, and Y.H. Shih
Department of Physics, University of Maryland, Baltimore County,

Baltimore, MD 21250

Marlan O. Scully
Department of Physics, Texas A \& M University, College Station, TX 77842 and Max-Planck Institut für Quantenoptik, München, Germany
(submitted to PRL)

Abstract

This paper reports a "delayed choice quantum eraser" experiment proposed by Scully and Drühl in 1982. The experimental results demonstrated the possibility of simultaneously observing both particle-like and wave-like behavior of a quantum via quantum entanglement. The which-path or both-path information of a quantum can be erased or marked by its entangled twin even after the registration of the quantum.

PACS Number: 03.65.Bz, 42.50.Dv

Complementarity, perhaps the most basic principle of quantum mechanics, distinguishes the world of quantum phenomena from the realm of classical physics. Quantum mechanically, one can never expect to measure both precise position and momentum of a quantum at the same time. It is prohibited. We say that the quantum observables "position" and "momentum" are "complementary" because the precise knowledge of the position (momentum) implies that all possible outcomes of measuring the momentum (position) are equally probable. In 1927, Niels Bohr illustrated complementarity with "wave-like" and "particle-like" attributes of a quantum mechanical object [1]. Since then, complementarity is often superficially identified with "wave-particle duality of matter". Over the years the two-slit interference experiment has been emphasized as a good example of the enforcement of complementarity. Feynman, discussing the two-slit experiment, noted that this wave-particle dual behavior contains the basic mystery of quantum mechanics [2]. The actual mechanisms that enforce complementarity vary from one experimental situation to another. In the two-slit experiment, the common "wisdom" is that the position-momentum uncertainty relation $\delta x \delta p \geq \frac{\hbar}{2}$ makes it impossible to determine which slit the photon (or electron) passes through without at the same time disturbing the photon (or electron) enough to destroy the interference pattern. However, it has been proven [3] that under certain circumstances this common interpretation may not be true. In 1982, Scully and Drühl found a way around this position-momentum uncertainty obstacle and proposed a quantum eraser to obtain which-path or particle-like information without scattering or

[^0]otherwise introducing large uncontrolled phase factors to disturb the interference. To be sure the interference pattern disappears when which-path information is obtained. But it reappears when we erase (quantum erasure) the which-path information [3,4]. Since 1982, quantum eraser behavior has been reported in several experiments [5]; however, the original scheme has not been fully demonstrated.

One proposed quantum eraser experiment very close to the 1982 proposal is illustrated in Fig.1. Two atoms labeled by A and B are excited by a laser pulse. A pair of entangled photons, photon 1 and photon 2, is then emitted from either atom A or atom B by atomic cascade decay. Photon 1 , propagating to the right, is registered by a photon counting detector D_{0}, which can be scanned by a step motor along its x-axis for the observation of interference fringes. Photon 2, propagating to the left, is injected into a beamsplitter. If the pair is generated in atom A, photon 2 will follow the A path meeting $B S A$ with 50% chance of being reflected or transmitted. If the pair is generated in atom B, photon 2 will follow the B path meeting $B S B$ with 50% chance of being reflected or transmitted. Under the 50% chance of being transmitted by either $B S A$ or $B S B$, photon 2 is detected by either detector D_{3} or D_{4}. The registration of D_{3} or D_{4} provides which-path information (path A or path B) of photon 2 and in turn provides which-path information of photon 1 because of the entanglement nature of the two-photon state of atomic cascade decay. Given a reflection at either $B S A$ or $B S B$ photon 2 will continue to follow its A path or B path to meet another $50-50$ beamsplitter $B S$ and then be detected by either detector D_{1} or D_{2}, which are placed at the output ports of the beamsplitter $B S$. The triggering of detectors D_{1} or D_{2} erases the which-path information. So that either the absence of the interference or the restoration of the interference can be arranged via an appropriately contrived photon correlation study. The
experiment is designed in such a way that L_{0}, the optical distance between atoms A, B and detector D_{0}, is much shorter than L_{i}, which is the optical distance between atoms A, B and detectors D_{1}, D_{2}, D_{3}, and D_{4}, respectively. So that D_{0} will be triggered much earlier by photon 1 . After the registration of photon 1 , we look at these "delayed" detection events of D_{1}, D_{2}, D_{3}, and D_{4} which have constant time delays, $\tau_{i} \simeq\left(L_{i}-L_{0}\right) / c$, relative to the triggering time of D_{0}. It is easy to see these "joint detection" events must have resulted from the same photon pair. It was predicted that the "joint detection" counting rate R_{01} (joint detection rate between D_{0} and D_{1}) and R_{02} will show interference pattern when detector D_{0} is scanned along its x-axis. This reflects the wave property (both-path) of photon 1. However, no interference will be observed in the "joint detection" counting rate R_{03} and R_{04} when detector D_{0} is scanned along its x-axis. This is clearly expected because we now have indicated the particle property (which-path) of photon 1. It is important to emphasize that all four "joint detection" rates R_{01}, R_{02}, R_{03}, and R_{04} are recorded at the same time during one scanning of D_{0} along its y-axis. That is, in the present experiment we "see" both wave (interference) and which-path (particle-like) with the same apparatus.

We wish to report a realization of the above quantum eraser experiment. The schematic diagram of the experimental setup is shown in Fig.2. Instead of atomic cascade decay, spontaneous parametric down conversion (SPDC) is used to prepare the entangled two-photon state. SPDC is a spontaneous nonlinear optical process from which a pair of signal-idler photons is generated when a pump laser beam is incident onto a nonlinear optical crystal [6]. In this experiment, the 351.1 nm Argon ion pump laser beam is divided by a double-slit and incident onto a type-II phase matching [7] nonlinear optical crystal BBO $\left(\beta-\mathrm{BaB}_{2} \mathrm{O}_{4}\right)$ at two regions A and B . A pair of 702.2 nm orthogonally polarized signal-idler photon is generated either from A or B region. The width of the SPDC region is about 0.3 mm and the distance between the center of A and B is about 0.7 mm . A Glen-Thompson prism is used to split the orthogonally polarized signal and idler. The signal photon (photon 1, either from A or B) passes a lens $L S$ to meet detector D_{0}, which is placed on the Fourier transform plane (focal plane for collimated light beam) of the lens. The use of lens $L S$ is to achieve the "far field" condition, but still keep a short distance between the slit and the detector D_{0}. Detector D_{0} can be scanned along its x-axis by a step motor. The idler photon (photon 2) is sent to an interferometer with equalpath optical arms. The interferometer includes a prism $P S$, two 50-50 beamsplitters $B S A, B S B$, two reflecting mirrors M_{A}, M_{B}, and a $50-50$ beamsplitter $B S$. Detectors D_{1} and D_{2} are placed at the two output ports of the $B S$, respectively, for erasing the which-path information. The triggering of detectors D_{3} and D_{4} provide which-path information of the idler (photon 2) and in turn provide which-path information of the signal (photon 1). The electronic output pulses of detectors D_{1}, D_{2},
D_{3}, and D_{4} are sent to coincidence circuits with the output pulse of detector D_{0}, respectively, for the counting of "joint detection" rates R_{01}, R_{02}, R_{03}, and R_{04}. In this experiment the optical delay $\left(L_{i}-L_{0}\right)$ is chosen to be $\simeq 2.5 \mathrm{~m}$, where L_{0} is the optical distance between the output surface of $B B O$ and detector D_{0}, and L_{i} is the optical distance between the output surface of the $B B O$ and detectors D_{1}, D_{2}, D_{3}, and D_{4}, respectively. This means that any information one can learn from photon 2 must be at least $8 n s$ later than what one has learned from the registration of photon 1 . Compared to the $1 n s$ response time of the detectors, 2.5 m delay is good enough for a "delayed erasure".

Figs.3, 4, and 5 report the experimental results, which are all consistent with prediction. Figs. 3 and 4 show the "joint detection" rates R_{01} and R_{02} against the x coordinates of detector D_{0}. It is clear we have observed the standard Young's double-slit interference pattern. However, there is a π phase shift between the two interference fringes. The π phase shift is explained as follows. Fig. 5 reports a typical $R_{03}\left(R_{04}\right)$, "joint detection" counting rate between D_{0} and "which-path" $D_{3}\left(D_{4}\right)$, against the x coordinates of detector D_{0}. An absence of interference is clearly demonstrated. There is no significant difference between the curves of R_{03} and R_{04} except the small shift of the center.

To explain the experimental results, a standard quantum mechanical calculation is presented in the following. The "joint detection" counting rate, $R_{0 i}$, of detector D_{0} and detector D_{j}, on the time interval T, is given by the Glauber formula [8]:

$$
\begin{align*}
R_{0 j} & \propto \frac{1}{T} \int_{0}^{T} \int_{0}^{T} d T_{0} d T_{j}\langle\Psi| E_{0}^{(-)} E_{j}^{(-)} E_{j}^{(+)} E_{0}^{(+)}|\Psi\rangle \\
& \left.=\frac{1}{T} \int_{0}^{T} \int_{0}^{T} d T_{0} d T_{j}\left|\langle 0| E_{j}^{(+)} E_{0}^{(+)}\right| \Psi\right\rangle\left.\right|^{2} \tag{1}
\end{align*}
$$

where T_{0} is the detection time of D_{0}, T_{j} is the detection time of $D_{j}(j=1,2,3,4)$ and $E_{0, j}^{(\pm)}$are positive and negative-frequency components of the field at detectors D_{0} and D_{j}, respectively. $|\Psi\rangle$ is the entangled state of SPDC,

$$
\begin{equation*}
|\Psi\rangle=\sum_{s, i} C\left(\mathbf{k}_{s}, \mathbf{k}_{i}\right) a_{s}^{\dagger}\left(\omega\left(\mathbf{k}_{s}\right)\right) a_{i}^{\dagger}\left(\omega\left(\mathbf{k}_{i}\right)\right)|0\rangle \tag{2}
\end{equation*}
$$

where $C\left(\mathbf{k}_{s}, \mathbf{k}_{i}\right)=\delta\left(\omega_{s}+\omega_{i}-\omega_{p}\right) \delta\left(\mathbf{k}_{s}+\mathbf{k}_{i}-\mathbf{k}_{p}\right)$, for the SPDC in which ω_{j} and $\mathbf{k}_{\mathbf{j}}(j=s, i, p)$ are the frequency and wavevectors of the signal (s), idler (i), and pump (p), respectively, ω_{p} and \mathbf{k}_{p} can be considered as constants, a single mode laser line is used for pump and a_{s}^{\dagger} and a_{i}^{\dagger} are creation operators for signal and idler photons, respectively. For the case of two scattering atoms, see ref. [3], and in the case of cascade radiation, see ref. [9], $C\left(\mathbf{k}_{s}, \mathbf{k}_{i}\right)$ has a similar structure but without the momentum delta function. The δ functions in eq.(2) are the results of approximations for an infinite size SPDC crystal and for infinite interaction time. We introduce the two-dimensional function $\Psi\left(t_{0}, t_{j}\right)$ as in eq.(1),

$$
\begin{equation*}
\Psi\left(t_{0}, t_{j}\right) \equiv\langle 0| E_{j}^{(+)} E_{0}^{(+)}|\Psi\rangle \tag{3}
\end{equation*}
$$

$\Psi\left(t_{0}, t_{j}\right)$ is the joint count probability amplitude ("wavefunction" for short), where $t_{0} \equiv T_{0}-L_{0} / c, t_{j} \equiv T_{j}-$ $L_{j} / c, j=1,2,3,4, L_{0}\left(L_{j}\right)$ is the optical distance between the output point on the BBO crystal and $D_{0}\left(D_{j}\right)$. It is straightforward to see that the four "wavefunctions" $\Psi\left(t_{0}, t_{j}\right)$, correspond to four different "joint detection" measurements, having the following different forms:

$$
\begin{gather*}
\Psi\left(t_{0}, t_{1}\right)=A\left(t_{0}, t_{1}^{A}\right)+A\left(t_{0}, t_{1}^{B}\right), \\
\Psi\left(t_{0}, t_{2}\right)=A\left(t_{0}, t_{2}^{A}\right)-A\left(t_{0}, t_{2}^{B}\right), \tag{4}\\
\Psi\left(t_{0}, t_{3}\right)=A\left(t_{0}, t_{3}^{A}\right), \quad \Psi\left(t_{0}, t_{4}\right)=A\left(t_{0}, t_{4}^{B}\right), \tag{5}
\end{gather*}
$$

where as in Fig. 1 the upper index of t (A or B) labels the scattering crystal (A or B region) and the lower index of t indicates different detectors. The different sign between the two amplitudes $\Psi\left(t_{0}, t_{1}\right)$ and $\Psi\left(t_{0}, t_{2}\right)$ is caused by the transmission-reflection unitary transformation of the beamsplitter $B S$, see Fig. 1 and Fig.2. It is also straightforward to calculate each of the $A\left(t_{i}, t_{j}\right)$ [10]. To simplify the calculations, we consider the longitudinal integral only and write the two-photon state in terms of the integral of k_{e} and k_{o} :

$$
\begin{array}{r}
|\Psi\rangle=A_{0}^{\prime} \int d k_{e} \int d k_{o} \delta\left(\omega_{e}+\omega_{o}-\omega_{p}\right) \times \\
\Phi\left(\Delta_{k} L\right) a_{k_{e}}^{\dagger} a_{k_{o}}^{\dagger}|0\rangle \tag{6}
\end{array}
$$

where a type-II phase matching crystal with finite length of L is assumed. $\Phi\left(\Delta_{k} L\right)$ is a sinc-like function, $\Phi\left(\Delta_{k} L\right)=\left(e^{i\left(\Delta_{k} L\right)}-1\right) / i\left(\Delta_{k} L\right)$. Using eqs. (3) and (6) we find,

$$
\begin{align*}
A\left(t_{i}, t_{j}\right)= & A_{0} \int d k_{e} \int d k_{o} \delta\left(\omega_{e}+\omega_{o}-\omega_{p}\right) \times \\
& \Phi\left(\Delta_{k} L\right) f_{i}\left(\omega_{e}\right) f_{j}\left(\omega_{o}\right) e^{-i\left(\omega_{e} t_{1}^{e}+\omega_{o} t_{2}^{o}\right)} \tag{7}
\end{align*}
$$

where $f_{i, j}(\omega)$, is the spectral transmission function of an assumed filter placed in front of the $k_{t h}$ detector and is assumed Gaussian to simplify the calculation. To complete the integral, we define $\omega_{e}=\Omega_{e}+\nu$ and $\omega_{o}=\Omega_{o}-\nu$, where Ω_{e} and Ω_{o} are the center frequencies of the SPDC, $\Omega_{e}+\Omega_{o}=\Omega_{p}$ and ν is a small tuning frequency, so that $\omega_{e}+\omega_{o}=\Omega_{p}$ still holds. Consequently, we can expand k_{e} and k_{o} around $K_{e}\left(\Omega_{e}\right)$ and $K_{o}\left(\Omega_{o}\right)$ to first order in ν :

$$
\begin{align*}
& k_{e}=K_{e}+\left.\nu \frac{d \omega_{e}}{d k_{e}}\right|_{\Omega_{e}}=K_{e}+\frac{\nu}{u_{e}} \\
& k_{o}=K_{o}-\left.\nu \frac{d \omega_{o}}{d k_{o}}\right|_{\Omega_{o}}=K_{o}-\frac{\nu}{u_{o}} \tag{8}
\end{align*}
$$

where u_{e} and u_{o} are recognized as the group velocities of the e-ray and o-ray at frequencies Ω_{e} and Ω_{o}, respectively. Completing the integral, the biphoton wavepacket of type-II SPDC is thus:

$$
\begin{equation*}
A\left(t_{i}, t_{j}\right)=A_{0} \Pi\left(t_{i}-t_{j}\right) e^{-i \Omega_{i} t_{i}} e^{-i \Omega_{j} t_{j}} \tag{9}
\end{equation*}
$$

where we have dropped the e, o indices. The shape of $\Pi\left(t_{1}-t_{2}\right)$ is determined by the bandwidth of the spectral filters and the parameter $D L$ of the SPDC crystal, where $D \equiv 1 / u_{o}-1 / u_{e}$. If the filters are removed or have large enough bandwidth, we have a rectangular pulse function $\Pi\left(t_{1}-t_{2}\right)$.

$$
\Pi\left(t_{0}-t_{j}\right)=\left\{\begin{array}{l}
1 \text { if } 0 \leq t_{0}-t_{j} \leq D L \\
0 \text { otherwise }
\end{array}\right.
$$

It is easy to find that the two amplitudes in $\Psi\left(t_{0}, t_{1}\right)$ and $\Psi\left(t_{0}, t_{2}\right)$ are indistinguishable (overlap in both $t_{0}-t_{j}$ and $t_{0}+t_{j}$), respectively, so that interference is expected in both the coincidence counting rates, R_{01} and R_{02}; however, with a π phase shift due to the different sign,

$$
R_{01} \propto \cos ^{2}(x \pi d / \lambda f), \quad \text { and } \quad R_{02} \propto \sin ^{2}(x \pi d / \lambda f)
$$

If we consider "slit" A and B both have finite width (not infinitely narrow), an integral is necessary to sum all possible amplitudes along slit A and slit B . We will have a standard interference-diffraction pattern for R_{01} and R_{02},

$$
\begin{align*}
& R_{01} \propto \operatorname{sinc}^{2}(x \pi a / \lambda f) \cos ^{2}(x \pi d / \lambda f) \\
& R_{02} \propto \operatorname{sinc}^{2}(x \pi a / \lambda f) \sin ^{2}(x \pi d / \lambda f) \tag{10}
\end{align*}
$$

where a is the width of the slit A and B (equal width), d is the distance between the center of slit A and B , $\lambda=\lambda_{s}=\lambda_{i}$ is the wavelength of the signal and idler, and f is the focal length of lens $L S$. We have also applied the "far field approximation" for the signal and equal optical distance of the interferometer for the idler. After considering the finite size of the detectors and the divergence of the pump beam for further integrals, the interference visibility is reduced to the level close to the observation.

For the "joint detection" R_{03} and R_{04}, it is seen that the "wavefunction" in eq.(5) (which clearly provides "which-path" information) has only one amplitude and no interference is expected.
In conclusion, we have realized a quantum eraser experiment of the type proposed in ref. [3]. The experimental results demonstrate the possibility of observing both particle-like and wave-like behavior of a light quantum via quantum mechanical entanglement. The which-path or both-path information of a quantum can be erased or marked by its entangled twin even after the registration of the quantum.

This work was supported, in part, by the U.S. Office of Naval Research, the Army Research Office - the National Security Agency, the National Science Foundation, and the Welch Foundation. MOS wishes to thank Roland Hagen for helpful and stimulating discussions.
[1] N. Bohr, Naturwissenschaften, 16, 245 (1928).
[2] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. III, Addison Wesley, Reading (1965).
[3] M.O. Scully and K. Drühl, Phys. Rev. A 25, 2208 (1982).
[4] See Wheeler's "delayed choice", in Quantum Theory and Measurement, edited by J.A. Wheeler and W.H. Zurek, Princeton Univ. Press (1983).
[5] A.G. Zajonc et al., Nature, 353, 507 (1991); P.G. Kwiat et al., Phys. Rev. A 49, 61 (1994); T.J. Herzog et al., Phys. Rev. Lett., 75, 3034 (1995); T.B. Pittman et al., Phys. Rev. Lett., 77, 1917 (1996).
[6] D.N. Klyshko, Photon and Nonlinear Optics, Gordon and Breach Science, New York (1988); A. Yariv, Quantum Electronics, John Wiley and Sons, New York (1989).
[7] In type-I SPDC, signal and idler are both ordinary rays of the crystal; however, in type-II SPDC the signal and idler are orthogonal polarized, i.e., one is ordinary ray and the other is extraordinary ray of the crystal.
[8] R.J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).
[9] M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, UK (1997).
[10] M.H. Rubin, D.N. Klyshko, and Y.H. Shih, Phys. Rev. A 50, 5122 (1994).

FIG. 1. A proposed quantum eraser experiment. A pair of entangled photons is emitted from either atom A or atom B by atomic cascade decay. "Clicks" at D_{3} or D_{4} provide which-path information and "clicks" at D_{1} or D_{2} erase the which-path information.

FIG. 2. Schematic of the experimental setup. The pump laser beam of SPDC is divided by a double-slit and incident onto a BBO crystal at two regions A and B . A pair of sig-nal-idler photons is generated either from A or B region. The detection time of the signal photon is $8 n s$ earlier than that of the idler.

FIG. 3. R_{01} ("joint detection" rate between detectors D_{0} and D_{1}) against the x coordinates of detector D_{0}. A standard Young's double-slit interference pattern is observed.

FIG. 4. R_{02} ("joint detection" rate between detectors D_{0} and D_{2}) Note, there is a π phase shift compare to R_{01} shown in Fig. 3

FIG. 5. R_{03} ("joint detection" rate between detectors D_{0} and D_{3}). An absence of interference is clearly demonstrated.

B From Retrocorrelation to Retrosignaling with $\mathrm{n} \times \mathrm{m}$ Delayed Choices ?

1. Description of above Retrocorrelation effect:

A photon hits a measuring screen, the x-coordinate arises randomly on base of a circumstance-dependent probability distribution, in the following called dice.
Which dice is used, is decided later, by means of a switch and a further coincidence at an entangled photon (reflection/passage at 50:50 beam splitter). On base of the photon impact one cannot recognize which dice is used. That the earlier location randomness at the screen causes the later 50:50 randomness is considered to be excluded.
So the dice is actually formed in the future.
However, no information is supposed to flow into the past, it is "only a correlation".
For special groups of photons, however, this was not proved as far as I know, and there are still speculations about the information flow.

2. From Retrocorrelation to Retrosignaling

In order to clarify this partially or finally, I suggest the following set-up:

slightly modificated experiment from Kim...Scully 2000 "Delayed Choice Quantum Eraser" BSoff:=100\%passage as if no BS in place

The photon paths are not qualitatively different from the original setup: If BSoff, photons going up have influence on signal like D4-photons, down D3, if BSon, up is like D2, down likeD1. So I use the signal dices from Kim...Scully.

50 n simultaneous experiments without coincidence counters ($\mathrm{m}=50$):

Array of Delayed-Choice-Arrays

-- 50 signal photons from 50 Delayed choice quantum erasers hit one screen. n such arrays deliver a noisy signal at $t=4$, but if the noise is distinctly different depending on the BS-position at $t=20$, then one bit was sent into the past.

The dice of a signal photon x-coordinate depends on the path of the idler photon. $\mathrm{f}_{\mathrm{i}}(\mathrm{x}):=\mathrm{Roi}(\mathrm{x}) \quad$ (article, expectation curve, not measurement curve or interpolation curve) For BSon and idler up dice is f_{1}, down f_{2}, off up f 3 , off down f_{4}.
For a screen, when BSon, the dice is
(I) $P_{o n}(d, m)=d / m f_{1}+(m-d) / m f_{2}$, with $d=n u m b e r$ of up-idlers, m number of signal photons (The screen expectation looks as if every single signal photon has this expectation, though they have different expectations due to their idlers.)

The signal curves Pon(d,m), or $\mathrm{p}^{\prime}(\mathrm{x}, \mathrm{d})$ in picture, are as follows; half of them with more than 1 maximum:
(The focal length of the signal lense is assumed $\mathrm{f}=0.7 \mathrm{~m}$, which fits to the mm -scale on the x -axes in their FIG.3-5; D1 is idler up, D2 down)

Probability curves for signal screens, depending on idler ratio D1/D2

BSon, $m=50$ photons/screen

$\mathrm{f}_{1}(\mathrm{x})=(\sin (1917.34 \mathrm{x}) \cos (4473.8 \mathrm{x}) /(1917.34 \mathrm{x}))^{2}$ - probability p^{\prime} if all idlers hit $\mathrm{D} 1, \mathrm{~d}:=[\mathrm{D} 1]=50$
$f_{2}(x)=(\sin (1917.34 x) \sin (4473.8 x) /(1917.34 x))^{2}-p^{\prime}(x)$ if $d=0$
$\mathrm{p}^{\prime}(\mathrm{x}, \mathrm{d})=1 / 50 *\left(\mathrm{df} 1(\mathrm{x})+(50-\mathrm{d}) \mathrm{f}_{2}(\mathrm{x})\right)$ - probability curve for signal screen with d D1-idlers
$\mathrm{N}(\mathrm{d})$:= number of variations with d D1-idlers among the 2^{50} possible idler variations $\mathrm{P}(\mathrm{d}):=\mathrm{N}(\mathrm{d}) / 2^{50}$ probability of idler variations with d D1-idlers
[-1.5 to 1.5 mm$] \int c p^{\prime}(x) d x \approx 0.99$

With BSoff, there are only signal curves (dices) with one maximum.
A screen measurement-graph set based on a Bson-dice set should have more maxima on average than with BSoff-dice:

For more than $m=50$ signal photons, the probability curves are better approached, but the percentage of screens with more than 1 maximum in probability curve decreases fast.

With different, clear-shaped maxima expectation curves, one can distinguish if the noise at $t=4$ comes from BSon or off at $t=20$:
In case of 10 (equal) measurement intervalls, there are between 0 and 5 maxima in the measurement curve. (depends on definition, two equal values as max)
black- maxima expectation curve for very high n if BSon, blue off. (ficticious)

Red dots = maxima-spektrum for a measurement with n screens; n high, so blue curve is recognised with $99, \mathrm{x} \%$ security. (one future bit)

Mathematical problem:
From a probability distribution, and a number of measurement intervalls, I don't see how many maxima the measurement curve has:
Example $P(x)=-x^{2}+4 x, m=50$ events, $I=10$ intervalls

red - measurement set with 4 maxima
x2
P (interval): $=3 / 32 \mid \int \mathrm{P}(\mathrm{x}) \mathrm{dx}$ I
$\sum \mathrm{P}$ (interval) $=1=100 \%$
So is there a formula/algorithm, where I put in P,m,I, which then says " with x\%probab. a measurement curve (bar chart) has 0 max, with y\% 1 max,..., 5 max" ?
Couldn't find one, so I have to do it by foot. (Calculate all combinations)
$\mathrm{Mi}(\mathrm{d}):=$ bar chart Probability over maxima number for one screen, d idlers up, 50 -d idlers down $\mathrm{i}=0$ for BSoff, 1 for on (for $\mathrm{i}=1$ the possible x -location probability curves are shown above) MSi := bar chart Probability over maxima number for random set of 50-photon-screens (= Maxima spectrum expectation; = probability for measurement set in picture, "screen set maxima spectrum")
(blue and black bar curve above)

The bar charts can be added according to their occurence probability:
(II) $\mathbf{M S}_{\mathbf{i}}=\left[\mathrm{d}=0 \mathrm{to}^{50} \mathbf{\Sigma} \mathrm{M}_{\mathrm{i}}(\mathrm{d})(\mathrm{m}\right.$ over d$) / 2 \exp 50 \quad$ (Addition lemma)
(bar charts can be added because the underlying screen probability curves are not added, which would change the expectation of number of maxima. Just the probabilities to find maxima are added.)

- To actually do an Delayed Choice Array without coincidence counters, the equipment must be very good (especially if you want tenthousands single experiments on a chip).
Every Photon must be under control.
Maybe higher-energy photons are possible.
Noise sources preventing a sharp maxima spectrum expectation:
N 1) The first problem besides a stable source is the double slit. Not all photons pass:

blue-sheet with slits yellow- ca.99\%light cone
If here the passing rate is about equal to the rate of the cross-sectional areas inside the light cone, about 65% of the photons get stuck in the sheet.
But that's no problem: If a sheet detects a photon impact, a new one can be sent within a nanosecond without disturbing the statistics. So it's possible that exactly 50 photons per screen (=array of 50 single experiments) go through the 50 doubleslits. This might take some ns, so longer light paths are necessary. To increase the choice delay time, slow photon medium would be helpful if very transparent. Then one could switch BS by hand, in contradiction to effect or not.

N2) Next comes two regions on a splitting crystal which splits the photon into entangled halfenergy photons (signal and idler). Depending on which slit the photon went through, one of the regions emits a signal/idler pair.
The standard interpretation is that the photon has gone through both slits (or neither slit if you see it as localized particle) if no proof can exist that it has gone through a distinct slit.
So at the crystal, there's a superposition of two events: "Region A emits" and "Region B emits". The superposition stays intact/unsolved if there can exist no proof through which slit the photon has gone (BSon). That means, it is then undefined what classically happened in Region A or B. If a photon was emitted from one region (or not) is neither true nor false.
The size of the regions brings a little indefiniteness to the probability curves, and blurrs the maxima expectation graph.

And some photons might get stuck.
Maybe missing photons on the screen can be replaced. (Counting photon impacts, doing missing runs long before idlers reach BS .)

N3) Lenses, mirrors, measurement devices are not 100\% exact too.
Hopefully this all sums up to less than one photon failure in 50 photons (per screen). I try to figure out technical details, then calculate not-to-blurry maxima expectation.
-- missing functions $\mathrm{f}_{3}, \mathrm{f}_{4}$ (expectation curves R03,R04 in article):
(III) $f_{3}+f_{4}=f_{1}+f_{2}=(\sin (1917.34 x) /(1917.34 x))^{2}$
(else one screen is enough do detect effect difference from BSon/off.)

No explicit calculation of R03, R04 in the text.
From

$$
\begin{aligned}
& \Psi\left(t_{0}, t_{1}\right)=A\left(t_{0}, t_{1}^{A}\right)+A\left(t_{0}, t_{1}^{B}\right) \\
& \Psi\left(t_{0}, t_{2}\right)=A\left(t_{0}, t_{2}^{A}\right)-A\left(t_{0}, t_{2}^{B}\right)
\end{aligned}
$$

follows
$R_{01} \propto \operatorname{sinc}^{2}(x \pi a / \lambda f) \cos ^{2}(x \pi d / \lambda f)$
$R_{02} \propto \operatorname{sinc}^{2}(x \pi a / \lambda f) \sin ^{2}(x \pi d / \lambda f)$
From
$\Psi\left(t_{0}, t_{3}\right)=A\left(t_{0}, t_{3}^{A}\right), \quad \Psi\left(t_{0}, t_{4}\right)=A\left(t_{0}, t_{4}^{B}\right)$
follows
R03,4 = ?
which are standard distributions with only one maximum.
(can't do calculation at the moment)
In the article, the graph Ro3 doesn't fit the other graphs, it was taken from another run. The measuring intervals are different from Ro1,2 though in the text they emphasize how important it is that all measurements are done in one run, and there are about 20% less photons. This doesn't mess with their task, it was just about proving there's no interference.
But it hinders the statistical analysis of parallel runs without coincidence counters, maybe intentionally.

- The fastest way to accomplish sending a bit into the past is obviously combining a few retrocorrelation experiments, on one screen, with the new fundamental force "Peoch79", as Princeton failed to do, see other publication "Draft Articles on Retrocausality". The new force changes wave functions, or measurement outcomes, and is called „intent". I still offer to replace the chicks in Peoch79 by small electric devices, which would make research easier. (good chances for success)

The decision to not switch BSoff though it was predicted by its effect, causes some sort of time paradox, especially if lots of action is attached to the signal. Like lots of machines, programs etc start and then the cause for the start is removed!?

- In the 1990s, there was an effort by bureaucrats, scientists, activists etc to disclose secret stuff in order to support evolution of mankind, like politics, ufos, psychology, energy, Dr. Greer, and such. (NSA, Army etc sponsor of article)
Even Sgt. Scully of X-files might have been named after one of the authors, who took part in both publications, 1982 and 1999. Because it's the "spookiest" effect. (spooky squared compared to the entanglement Einstein called spooky)
Then some detail-disclosure followed (Wikileaks), and now allegedly Qanon, which is sort of continuation of disclosure, or half shit and half not wrong, or complete BS, or all in one, didn't look at.

[^0]: *Permanent Address: Department of Physics, Moscow State University, Moscow, Russia

